Spirometry: a key measurement in diagnosing and treating asthma

Bill Pruitt, MBA, RRT, CPFT, AE-C, FAARC Director of Clinical Education Dept. of Cardiorespiratory Care University of South Alabama

wpruitt@southalabama.edu 251-445-9284

Conflict of Interests Disclosures

- I am on the Speakers Bureau for Hill Rom and Pharmaxis
- I am a trainer for Hill Rom and Pharmaxis

I have no conflict of interests with this presentation

Objectives

- Demonstrate spirometry and how spirometry is interpreted
- Explain the pre-post test preparation and equipment/supplies needed for various tests
- Review the testing procedures and define a positive tests

Why perform spirometry?

- Add to diagnosis of disease (pulmonary and cardiac)
- Assess response to new medications
- Can help monitor progression of disease and effectiveness of treatment
- Aid in pre-operative assessment of certain patients
- Worker's compensation claims
- Research

Spirometry is valuable but....

- It does not stand alone
 - It acts only to support or exclude a diagnosis.
- History and physical exam, laboratory data, imaging will help establish a diagnosis.

Importance of objective measurement

- Patients and physicians often have inaccurate perceptions of severity of airflow obstruction
 - Asthma patients may be "poor perceivers"....
- Spirometry provides objective evidence in identifying patterns of disease

Undiagnosed patients?

Suspicion of lung disease?

- Four classic symptoms:
 - Wheezing
 - Chest tightness
 - SOB/DOE
 - Coughing
 - Asthma all 4 often present
 - COPD excludes chest tightness

SPIROMETRY

Frequency –how of often to do spirometry

- Measure lung function by spirometry when:
 - 1. Performing the initial assessment
 - 2. After treatment has started and symptoms are stabilized look for airways to be "near normal"
 - 3. Anytime there is a progression downward or a prolonged loss of asthma control
 - 4. At least every 1-2 years to assess control
 - 5. Follow for life

4 volumes – 4 capacities

- * Capacities are made up of 2 or more volumes
- * 3 of these 8 items cannot be measured by spirometry (RV, FRC, TLC)

Overview -Spirometry

- Males have higher values than females
- Height affects both volume and flow (more height increases both)
- Lung function plateaus at about 25 years of age then start to decline (naturally occurring emphysematous changes)
 - VC decreases at about 30 mL/yr after age 35
- While VC decreases, RV increases leaving TLC about the same
- Spirometery measures all volumes and capacities except RV, FRC, TLC
 - Lung volume tests such as plethysmography or gas analysis is needed to get these measurements
- Easy to perform starting about 6-8 yrs old

Test Validity Requirements

Good patient technique (Good coaching)

Patient cooperation (Good coaching)

Reproducibility (Good coaching)

"Tests should be reproducible and reliable"

Volume-time curves

Volume-time curves

Flow/volume loop

FEV1, PEF, PIF, FVC

Flow/volume loops

Asthma patients may record any of these three F/V loops depending on their status at the time of the recording

American Thoracic Society (ATS)

- Sets standards for acceptability for equipment
 - Accuracy, calibration, and range of measurement
 - Calibration checks done daily showing <u>+</u> 3% accuracy with a 3 L syringe
 - Check calibration using a variety of flow rates
 - Designates equipment to be either for diagnostics or for monitoring
- Volume spirometers must be checked for leaks
- Sets standards for accuracy and reproducibility of tests
- The most recent issues of all the PFT standards can be found at http://www.thoracic.org/statements/

Predicted values

- Comparison of measured to predicted (percent predicted)
 - <80% predicted for single measured values is abnormally low
 - Some are looking to lower limits of normal (LLN) to define abnormality
- Adults ATS recommends NHANES III for predicted values for those 8 – 80 yrs old
- Pediatrics ATS recommends Wang for predicted values (subjects <8 yrs old)

R. Pellegrino, G. Viegi, V. Brusasco, et al. Interpretative strategies for lung function tests. Eur Respir J 2005; 26: 948–968

Wang X, Dockery DW, Wypij D, Fay ME, Ferris BG Jr. Pulmonary function between 6 and 18 years of age. Pediatr Pulmonol 1993; 15: 75–88.

Key Determinants of Predicted Values

- Age values decrease with age
- Height- values increase with height
 - May use arm span (finger tip to finger tip) to estimate height
 - Best option for accurate predicted values is to measure and make sure
- Sex- females have smaller lungs = less volume
- Race/Ethnicity also influences predicted values
 - sometimes called reference values
- Reports given with Measured, Predicted, and Percent predicted. Example:

Example

<u>Value</u>	Meas (L)	Pred (L)	% Pred
FVC	4.71	5.28	89
FEV ₁	3.05	3.78	81
FEV ₁ /FVC	65		

Note: Both FVC % predicted and FEV₁% predicted are normal

However - FEV₁ratio is 65 (abnormal)

Other Influencing Factors

- Weight (ideal body weight vs actual weight)
- Environment (ie. air pollution, altitude)
- Smoking

Withholding Medications

Ideally -before performing spirometry, withhold:

- β_2 -agonists
 - Short acting β_2 -agonists for 4 hours
 - Long acting β_2 -agonists for 12 hours
- Anticholinergics
 - Ipratropium for 6 hours
 - Tiotropium for 24 hours

Optimally, subjects should avoid caffeine and cigarette smoking for 30 minutes before performing spirometry

Spirometry Quality Control – 6 points

- Calibrate the spirometer every day troubleshoot if not acceptable
- At least 3 tests and:
 - 1. Acceptable tests have no hesitation ...BEV < 5% of FVC (start of test)
 - Acceptable tests have at least 6 seconds for exhalation (middle of test)
 - 3. Acceptable tests reach a plateau (end of test for recording exhalation)

<25mL change over 1 second

- 4. The 2 best tests FVC values + 150 ml
- 5. The 2 best FEV₁ values ± 150 ml
- 6. The best 2 acceptable tests PEF <u>+</u> 10%
- 1, 2, 3 are "within" test criteria; 4, 5, 6 are "between" tests

Quality issues

- Most common cause of inconsistent measurements poor patient technique
 - Sub-optimal inspiration
 - Sub-maximal expiratory effort
 - Delay in starting forced exhalation
 - Too short expiratory time
 - Air leak around mouthpiece
- Subjects must be observed and encouraged throughout the procedure

Spirometry - Possible Side Effects

- Feeling light-headed
- Headache
- Getting red in the face
- Fainting: reduced venous return or vasovagal attack (reflex)
- Transient urinary incontinence

Spirometry should be avoided after recent heart attack or stroke

Forced Vital Capacity

 Inhale fully then exhale as forcefully as possible for as long as possible to reach end of exhalation (Goal = minimum 6 sec. May go 15+ seconds)

Directions to subject:

- "Deep breath in, deeper, deeper, more, more....now BLAST IT OUT and keep blowing!"
- "Keep blowing, keep blowing, don't breath in...."

Forced Vital Capacity

- Do at least 3 and usually no more than 8 FVC maneuvers
 - Save all tests for evaluation pick the best 3 for the report
- Allow patient to rest between maneuvers if needed
- No cough, no leaks, give maximum effort (no "sighs")

Measurements from FVC

- Forced Vital Capacity (FVC) in liters
- Forced Expiratory Volume in 1 second (FEV₁) liters/sec
- FEV₁ /FVC (aka FEV₁ % or FEV₁ ratio)
 - These 3 are KEY measurements for interpretation and COPD/Asthma guidelines
 - Note: may use FEV₆ instead of FVC

Measurements from FVC

- Forced Expiratory Flow between 200 and 1200 ml (FEF₂₀₀₋₁₂₀₀) expressed in L/sec
 - Early in exhalation....reflects larger airways
- Forced Expiratory Flow between 25% and 75% of vital capacity
 - (FEF_{25-75%}) expressed in L/sec
 - Later in exhalation... reflects medium to small airways
- Peak Flow (PEFR, PEF, PF) expressed in L/sec
- Forced expiratory time (length of time for exhalation)
 - FET_{100%}

FVC

(Forced Vital Capacity)

- May be recorded in a volume/time curve or flow/volume loop
- PFTs are measured at ATPS but must be reported at BTPS.
 - Ambient temperature, pressure, saturated
 - Body temperature, pressure, saturated

Spirometry Interpretation: Obstructive vs. Restrictive Defect

Obstructive Disorders

 Limitation of expiratory airflow so that airways cannot empty as rapidly compared to normal (such as through narrowed airways from bronchospasm, inflammation, etc.)

Examples:

- Asthma
- COPD (Emphysema –Chronic bronchitis)
- Cystic Fibrosis

Restrictive Disorders

 Reduced lung volumes and often decreased lung compliance

Examples:

- Interstitial Fibrosis
- Scoliosis
- Obesity
- Lung Resection
- Neuromuscular diseases
- Cystic Fibrosis

Spirometry Interpretation: Obstructive vs. Restrictive Defect

- Obstructive Disorders*
 - FVC nl or ↓
 - FEV1 ↓
 - FEF25-75% ↓
 - FEV1/FVC ↓
 - TLC nl or 个

- Restrictive Disorders**
 - FVC ↓
 - FEV1 ↓
 - FEF 25-75% nl to ↓
 - FEV1/FVC nl to 个
 - TLC ↓
- * COPD defined by the FEV1/FVC (<70% in GOLD guidelines)
- ** Restriction is a possible issue using these criteria if there is no obstruction and FVC< 80% predicted

Before and After Bronchodilator Therapy (Pre & post bronchodilator)

- To be called "Significant response to bronchodilator"
 - (+) 12% change and 200 cc increase in FEV₁
 - This is the most "favored" change*

.....OR

- (+) 12% change and 200 cc increase in FVC
- % Change =[Post Pre) / Pre] * 100
 - Expectation is for increased FVC and FEV₁ post tx
 - Note: Decreased volume (FVC) in post measurements could be related to fatigue
- Asthma patients often show significant response (reversible AFO). COPD patients show positive response but not significant unless they have overlap syndrome

Before and After Bronchodilator Therapy (Pre & post bronchodilator)

- Indication: FEV₁ ratio is less than predicted
- Patient should hold meds that could "blunt" the spirometry
 - Hold quick-acting bronchodilators at least 4 hours prior to testing (if possible), long lasting at least 12 hours
- Record baseline (pre) F/V loops and lung volumes (lung subdivisions) before giving bronchodilator (if doing a complete PFT)
- Give tx and wait 15 minutes before retesting F/V loops

This photo courtesy of the American Association for Respiratory Care

This photo courtesy of my boss

Pre-post F/V loops and V/T curves

Pre/post measurement

Asthma COPD Overlap Syndrome (ACOS)

- Compared to asthma or COPD alone, these patients have
 - More frequent exacerbations
 - Lower quality of life
 - More rapid decline in lung function
 - Higher mortality
 - Consume a disproportionate amount of healthcare resources
- Concurrent doctor-diagnosed asthma and COPD has been reported in between 15 and 20% of patients
 - If the differential diagnosis equally balanced between asthma and COPD (i.e. ACOS) the default position should be to start treatment accordingly for asthma

Diagnosis of Diseases of Chronic Airflow Limitation: Asthma, COPD and Asthma-COPD Overlap Syndrome (ACOS) 2014

Overlap syndrome (ACOS)

Spirometry variable	Asthma	COPD	ACOS
Post-BD increase in FEV ₁ >12% and 200 ml (reversibility)	Usual at some time with asthma, but may not be present when well controlled or on controllers	Common and more likely when FEV1 is low, but ACOS should also be considered	Common and more likely when FEV1 is low, but ACOS should also be considered
Post-BD increase in FEV ₁ >12% and 400 ml (marked reversibility)	High probability of asthma	Unusual in COPD. Consider ACOS	Compatible with diagnosis of ACOS

Central and upper airway obstruction

- Fixed Obstruction
 - Foreign bodies/tumors
 - Scarring/stiffening of upper airways
- Variable Extra-thoracic
 - Tumors
 - Weak pharyngeal muscles
 - Tracheomalacia
 - Paralyzed vocal chords
 - Enlarged lymph nodes
 - Inflammation
- Variable Intra-thoracic
 - Tumors
 - Mediastinal adenopathy

Variable Extra-thoracic

Variable Intra-thoracic

Fixed Obstruction

Foreign bodies/tumors Scarring/stiffening of upper airways

Both loops are affected (I & E)

Variable Extra-thoracic

Inflammation

Tumors
Weak pharyngeal muscles
Tracheomalacia
Paralyzed vocal chords
Enlarged lymph nodes

Affects the inspiratory loop

Variable Intra-thoracic

Tumors Mediastinal adenopathy

Affects the expiratory loop

When interpreting.....

- Review the demographics
 - Age, height, gender, race, weight
- Check the symptoms
 - Cough (dry?), SOB, wheezing, chest tightness
 - Any patterns? Seasonal, occupational?
- When was the last time they had a SABA? LABA? ICS?
- Look over the history and chief complaint
 - Smoker? Pack yrs? Include pipe, cigar, waterpipe (hookah)
 - Comorbidities?

Co-morbidities: COPD and asthma (in adults)

- Ischemic heart disease (CAD), hypertension, CHF, pulmonary hypertension, M.I., stroke
- Lung cancer
- Restrictive lung diseases (asbestosis, sarcoidosis)
- Pulmonary embolism
- Pneumonia, CF, bronchiectasis
- DM, obesity, OSA, malnutrition, GERD
- Dementia, Alzheimer's, depression
- Neuromuscular diseases
- Osteoporosis, arthritis, gout, hearing loss, vision loss

When interpreting

- Read the comments made by the person coaching the test
 - "C/O chest pain"
 - "Frequent coughing"
 - "Unable to perform test, unable to follow instructions"
- Look at the graphs
- Study the numbers and check against the predicted values
- <80 % predicted or <LLN to define abnormalities

Differential diagnosis of asthma

- COPD
- Congestive heart failure
- Pulmonary embolism
- Upper Airway Cough (UAC)
- GERD
- Vocal cord dysfunction
- Cystic fibrosis

- Pulmonary infiltration with eosinophilia
- Cough secondary to drugs (i.e., ACE inhibiters)
- Allergic bronchopulmonary aspergillosis
- Churg-Strauss syndrome
- Malignancy obstruction of the airways

- 46 year old female: 5'0", 116 lbs. Vital signs- early HTN
- Says she has been told she has asthma (dx at16)
 - Prod cough 5-6 days a week, more in AM
 - Daily wheezing, has chest tightness 6-7 days a week, more at night
 - Sleep: c/o cough, wheeze at night ~ 5-6 times a week
 - DOE
 - Faint bilateral I&E wheezes
 - Has GERD
- 30 pk/yrs smoking. Quit 2 months ago. Recent hospital admt for pneumonia
- Allergies: NKDA. Triggers: pollen, dust, dogs, cleaning products
- Occupational: works as a housekeeper at hotel
- Family: Father, sister, 2 granddaughters have asthma
- Using albuterol 2 inh PRN plus nebulizer (several times each day).
 Zyrtec (cetirizine)as needed during pollen seasons
- Last used albuterol at 1 AM (9 hrs prior to testing)

Patient Information

Name Teaching case 8 ID 46 Age 5 ft 0 in Height 130 lbs, BMI 25.5 Weight Gender FEMALE AFRICAN Ethnic FORMER Smoker

YES

Test Information

Test Date/Time		10:43am
Post Time	:	
Test Mode	DIAGNOSTIC	
Interpretation	NLHEP	
Predicted Ref	NHANES III	
Value Select	BEST VALUE	
Tech ID		
Automated QC	ON	
BTPS (IN/EX)	/ 1.04	

Asthma

Test Results Your FEV1 is 32% Predicted

Pre-Test

ā ā ī					_	
Parameter	Best	Trial3	Trial2	Trial1	Pred	%Pred
FVC[L]	2.29	2.29	2.25	2.14	2.52	91
FEV1[L]	0.66*	0.66*	0.59*	0.60*	2.05	32
FEV1/FVC	0.29*	0.29*	0.26*	0.28*	0.82	35
FEF25-75[L/s]	0.21*	0.21*	0.18*	0.19*	2.32	9
FET[s]	12.70	12.70	14.79	14.24		
			C D .	at Change		

* Indicates Below LLN or Significant Post Change

Pre-Test

FEV1 Var=0.07L 10.4%; FVC Var=0.04L 1.8%;

Session Quality A

Severe Obstruction Interpretation

Patient Information

Asthma

Name
ID Teaching case 8
Age 46
Height 5 ft 0 in
Weight 130 lbs, BMI 25.5
Gender FEMALE
Ethnic AFRICAN
Smoker FORMER

Test Information

Test Date/Time 10:43am Post Time 11:24am Test Mode DIAGNOSTIC Interpretation NLHEP Predicted Ref NHANES III Value Select BEST VALUE Tech ID Automated QC ON BTPS (IN/EX) -.--/ 1.04

Test Results Your FEV1 is 32% Predicted

YES

Pr	e-Test					Pos	st-Test				
<u>Parameter</u>	Best	Trial3	Trial2	Trial1	Pred	%Pred	Best	Trial3	Trial1	Trial2	Chg
FVC[L]	2.29	2.29	2.25	2.14	2.52	91	2.17	2.17	2.14	2.07	-5%
FEV1[L]	0.66*	0.66*	0.59*	0.60*	2.05	32	0.69*	0.67*	0.69*	0.66*	3%
FEV1/FVC	0.29*	0.29*	0.26*	0.28*	0.82	35	0.32*	0.31*	0.32*	0.32*	
FEF25-75[L/s]	0.21*	0.21*	0.18*	0.19*	2.32	9	0.18*	0.18*	0.23*	0.19*	-14%*
FET[s]	12.70	12.70	14.79	14.24			16.22	16.22	14.10	14.36	
* Indicates Bel	OW LIN O	or Signif	ficant Po	st Change	2	19					

* Indicates Below LLN or Significant Post Change

Pre-Test FEV1 Var=0.07L 10.4%; Post-Test FEV1 Var=0.02L 2.5%; Interpretation Severe Obstruction

FVC Var=0.04L 1.8%; FVC Var=0.03L 1.2%; Session Quality A Session Quality A

Case 8 – plan of care

Severe persistent asthma, probably Overlap Syndrome

Case 8 Plan of care

- SABA: Albuterol 2 inhalations PRN QID
- LABA/ICS high dose: Fluticasone/Salmeterol (500/50) 1 inh BID (check for adequate inspiratory flow – DPI or MDI?)
- Control GERD –proton pump inhibitor (esomeprazole or omeprazole)
- LTRA: Montelucast 10 mg PO daily
- Start drug assistance program to get meds on regular basis
- Confirm proper technique with all inhaler devices
- Avoid triggers and continue to stop smoking
- Get influenza vaccination each fall
- Get pneumococcal vaccination
- Provide Asthma Action Plan cover exacerbations
- Discuss diet and exercise (weight loss?)
- Follow-up visit in 2 weeks

- 47 year old female: 5'4", 141 lbs. Vital signs normal
- Says she has been told she has asthma
 - Daily prod cough, more at night and in the AM
 - No c/o wheezing, has chest tightness 3-4 days a week
 - Sleep: c/o some cough at night ~ 3-4 times a week
 - DOF
 - Faint bilateral wheezes
 - No c/o GERD
- Never smoked, No hospital or ED visits, No loss of usual activities
- Allergies: NKDA. Triggers: pollen, cigarette smoke, cleaning products
- Occupational: c/o propane-powered floor cleaner at the grocery where she works
- Family: negative for asthma
- Using albuterol 2 inh PRN plus nebulizer (several times each day).
 Tried Advair for about 2 weeks and quit made face swell
- Last used albuterol at 3 AM (7 hrs prior to testing)

Patient Information

Name ID Teaching case 2

Age 47 Height 5 ft 4 in

Weight 141 lbs,BMI 24.4

Gender FEMALE Ethnic AFRICAN Smoker NO

Asthma YES

Test Information

Test Date/Time
Post Time

Test Mode DIAGNOSTIC

11:01am

Syst. Interpret. NLHEP
Predicted Ref Nhanes III
Value Select BEST VALUE

Tech ID Automated QC

Automated QC ON BTPS (IN/EX) -.-/ 1.04

FVC Test Results Your FEV1 is 55% Predicted

Parameter	Best	Trial5	Trial3	Trial4	Pred	%Pred
FVC[L]	3.15	3.15	3.02	2.84	2.93	108
FEV1[L]	1.30*	1.28*	1.24*	1.30*	2.37	55
FEV1/FVC[%]	41.1*	40.7*	41.2*	45.7*	82.0	50
PEF[L/s]	3.28*	3.28*	3.05*	2.83*	6.30	52
FEF25-75[L/s]	0.25*	0.25*	0.21*	0.28*	2.55	10
FET[s]	23.92	23.92	23.75	19.30	-,	

* Indicates Below LLN

Pre-Test FEV1 Var=0.01L 0.9%; FVC Var=0.13L 4.3%; Session Quality B

Syst. Interpret. Moderate Obstruction

Patient Information

Name Teaching case 2

Age 47

Height 5 ft 4 in Weight 141 lbs,BMI 24.4

Gender FEMALE
Ethnic AFRICAN
Smoker NO

Smoker NO Asthma YES

Test Information

Test Date/Time
Post Time
11:47am
Test Mode
Syst. Interpret.
Predicted Ref
Value Select

11:47am
DIAGNOSTIC
NLHEP
Nhanes III
BEST VALUE

Tech ID

Automated QC ON BTPS (IN/EX) -.--/ 1.04

FVC Test Results Your FEV1 is 55% Predicted (Post-Test FEV1 69% Predicted)

	Pre-Test					Po	ost-Test			(
Parameter	Best	Trial5	Trial3	Trial4	Pred	%Pred	Best	Trial3	Trial2	Trial1
FVC[L]	3.15	3.15	3.02	2.84	2.93	108	2.94	2.94	2.82	2.73
FEV1[L]	1.30*	1.28*	1.24*	1.30*	2.37	55	1.63*	1.63*	1.55*	1.52*
FEV1/FVC[%]	41.1*	40.7*	41.2*	45.7*	82.0	50	55.6*	55.6*	54.8*	55.5*
PEF[L/s]	3.28*	3.28*	3.05*	2.83*	6.30	52	4.51	4.51	4.27*	4.03*
FEF25-75[L/s]	0.25*	0.25*	0.21*	0.28*	2.55	10	0.58*	0.58*	0.47*	0.53*
FET[s]	23.92	23.92	23.75	19.30	-,		17.23	17.23	17.35	15.66

* Indicates Below LLN or Significant Post Change

Pre-Test FEV1 Var=0.01L 0.9%; FVC Var=0.13L 4.3%; Session Quality B Post-Test FEV1 Var=0.09L 5.3%; FVC Var=0.12L 3.9%; Session Quality B

Syst. Interpret. Moderate Obstruction

FET -38.82% drop but missed only 210 mL in FVC

Chg -7% 26%*

38%* 134%*

- 38 year old female: 5'2", 119 lbs. Vital signs normal
 - No c/o cough or chest tightness
 - Wheezing 2-3 days/wk, more at night
 - Sleep: c/o some SOB at night
 - SOB occasionally with exertion (DOE)
 - Faint wheezes
- Smoked for a few months and quit
- No hospital or ED visits
- No loss of usual activities
- Allergies: NKDA but c/o sinus issues. Triggers: dog, dust
- Family: hx of asthma
- Using albuterol 2 inh PRN (used once a day for last several days

Case 1 Female, 38 y/o, 5'2", 119 lbs

(Pre/Post)

Case 1 Female, 38 y/o, 5'2", 119 lbs (Pre/Post)

Patient	Information		Test Information	
Name	Teaching case 1		Test Date	09:40am
ID	reaching case r		Post Time	10:09am
Age	38		Test Mode	DIAGNOSTIC
Height	5 ft 2 in		Interpretation	NLHEP
Weight	119 lbs, BMI 21.	9	Predicted Ref	NHANES III
Gender	FEMALE		Value Select	BEST VALUE
Ethnic	CAUCASIAN		Tech ID	
Smoker	FORMER		Automated QC	ON
Asthma	POSSIBLE		BTPS (IN/EX)	/ 1.04

Test Results Your FEV1 is 46% Predicted

Ва	seline						Post			
Parameter	Best	Trial3	Trial2	Trial1	Pred	%Pred	<u>Best</u>	<u>Trial4</u>	<u>Trial3</u>	<u>Trial1</u>
FVC(L)	2.78*	2.78*	2.70*	2.47*	3.45	80	3.38	3.38	3.33	3.12
FEV1(L)	1.32*	1.32*	1.31*	1.20*	2.85	46	1.73*	1.73*	1.70*	1.60*
FEV1/FVC	0.48*	0.48*	0.49*	0.49*	0.83	58	0.51*	0.51*	0.51*	0.51*
PEF(L/min)	188*	188*	179*	173*	400	47	235*	235*	224*	202*
FEF25-75(L/s)	0.48*	0.48*	0.47*	0.48*	3.08	16	0.65*	0.65*	0.66*	0.66*
FET(s)	16.21	16.21	16.15	10.74			15.57	15.57	15.62	13.18
* Indicates Re	* Indicates Relow LLN or Significant Post Change									

Session Quality FVC Var=0.08L 2.7%; Baseline FEV1 Var=0.01L 0.8%; FEV1 Var=0.03L 1.9%; FVC Var=0.04L 1.3%; Session Quality Post Interpretation Moderate Obstruction and Low vital Capacity possibly due to restriction

FET Dropped ~4% but got 600 mL more in FVC

Chg 22%* 31%*

25%* 36%*

Conclusion

- Spirometry can provide an objective measurement of lung function and provide clues to discern several conditions (asthma, COPD, restrictive disorders)
- It takes trained personnel to be done properly and to troubleshoot issues for quality
- It can be done with very little capital invested but provides excellent tracking for pulmonary issues (billable procedure)
- Resources:
- AARC Clinical practice guidelines www.rcjournal.com/cpgs/index.cfm
- For COPD www.goldcopd.com
- For Asthma www.nhlbi.nih.gov/guidelines/asthma
- For Certified Asthma Educator credential (AE-C) www.naecb.com

Thank you for listening

Bill Pruitt, MBA, RRT, CPFT, AE-C, FAARC
Director of Clinical Education
Dept. of Cardiorespiratory Care
University of South Alabama

wpruitt@southalabama.edu 251-445-9284